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Magnetization of harmonically bound charges 
G. J. PAPADOPOULOS 
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, 
England 
MS.  received 15th March 1971 

Abstract. The propagator for a harmonically bound charged particle in a 
constant uniform magnetic field is evaluated exactly from which the corres- 
ponding partition function and density of states are obtained. Then, the 
equilibrium response of an assembly of harmonically bound point charges is 
studied using both Boltzmann and Fermi-Dirac statistics. The results are con- 
sidered in relation to the ionic lattice and to some extent to the charged nucleons. 

1. Introduction 
The  problem of the induced magnetization on charged particles bound in a 

general potential well is of considerable mathematical complexity. Because of this, 
it is difficult to reach trustworthy conclusions, and the treatment of one exactly 
soluble model would be of considerable interest. Such is the case of harmonically 
bound charges in a constant magnetic field. We consider Boltzmann and Fermi- 
Dirac statistics. Although the model is of a theoretical nature, it may relate to the 
behaviour of metallic ions in an external magnetic field and to a lesser extent to the 
diamagnetic behaviour of protons in a crude shell model. 

In  the subsequent sections we evaluate exactly the propagator of a charged particle 
in  a harmonic oscillator well and under the influence of a constant homogeneous 
magnetic field. Then, the partition function and the density of states are readily 
obtained from the propagator. The  expressions for low fields of the susceptibility 
in the cases of Boltzmann and Fermi-Dirac statistics are obtained via the corres- 
ponding expressions for the free energy. Some consideration of the effect of the 
magnetic field on the specific heat of the metallic lattice is also given. 

After completion of the present work we found that Darwin (1930)T also obtained 
the high temperature limit of the magnetic susceptibility of a system of harmonically 
bound electrons. There the harmonic well was used as a device to replace the bound- 
ing walls of a system of free electrons in a magnetic field. 

2. The propagator 
Perhaps the simplest and most elegant way to obtain the propagator of the 

Schrodinger equation for a harmonically bound charged particle in a magnetic field 
is by functional integration. I n  this approach it is more natural to deal with Lagran- 
gians than Hamiltonians. 

We shall be concerned with a charged particle in a harmonic oscillator well 
m 
2 
- n2gz 

and a constant magnetic field B = (0, 0, B). In  this case the Lagrangian is 

where w = eB/m is the cyclotron frequency. 

773 
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Let us introduce the (2  x 2)  matrices 

which obey the relation 
J 2 =  -1 ( 2 . 2 ~ )  

that is, the matrix J plays the role of the ‘ (2  x 2)  imaginary unit’. 

gl, that is 
Let us also denote the component of 5 perpendicular to the magnetic field by 

The  Lagrangian (2.1) can be split into two independent terms, one of which is 
entirely dependent on the component E,1 and the other on the parallel component e3, that is 

Using (2.1) and (2.2) we have 

m .  m 
2 2 - q t 3 ]  = - E32 - - Q2t32.  

(2.3a) 

(2.3b) 

Now since, there is no term in the decomposition (2.3) of the Lagrangian mixing 
the variables g1 and f 3 ,  the propagator K factorizes as follows: 

K = K ,  . K,, (2.4) 
where Kll corresponds to the Lagrangian L,, given in (2.3b), and which is the Lagran- 
gian for a one dimensional harmonic oscillator and is given by Feynman and 
Hibbs (1965) as 

KI,(X3tlX,‘O) = ( )1’2 
27rih sin Qt 

i mQ 
8i 2 sin Qt 
-- (cos Q ~ ( X , ~  + x ~ ‘ ~ )  - 2X3X3’) 

We now wish to evaluate the propagator Kl for the perpendicular component gL. 
As is well known the propagator takes the form of a conditional path integral 

e t  

K1(x,tjx,’O) = [ elpj; 1 Ll[Cl(7)1 d7) 9[51(7)1 (2.6) 
0 

5 1 w  = XI’ 

L ( t )  = 2, 

where the path differential is given by 
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Since the Lagrangian L ,  given in ( 2 . 3 ~ )  is quadratic the path integral (2.6) can be 
evaluated as 

m 
K,( x,t ] x,’O) = 

where S,(x,t[ x,‘O) is the classical action (Hamilton’s principal function) for the 
perpendicular component of our particle evolving via the equations of motion 

which, utilizing ( 2 . 3 ~ )  can be written explicitly as 

5, + wJ5, + Q’g, = 0. (2.8a) 

D(t)  appearing in (2.7) is a (2  x 2) matrix and, can be shown, using equations (5 .8,  
5.22, 5.23) from Papadopoulos (1968) with 

to satisfy the differential equation 

w w 
~- -BJ+ - D J D - ~ D + D  

2 2 

under the initial conditions 

D(0) = 0 D(0) = I .  (2.9a) 

Fortunately the required solution can be obtained in the form 4I, 4 being a scalar 
and (2.9) reduces to 

k+DQ” = 0 (2.10) 

where we have introduced 

Q’ = (Qz+(w/2)2)1’2. (2 .  l o a )  

Taking account of the boundary conditions ( 2 . 9 ~ )  we have 

sin Q‘T 
Q‘ 

D(T) = ___ I .  (2 .  lob) 

Later on we shall extract D(t)  from the classical action, using a result of Van 

We turn now to the evaluation of the classical action S,. We require the solution 
Vleck (1928) and Pauli (1951) .  

of the equations of motion (2 .8~)  under the end conditions 

L ( 0 )  = $1’ U t )  = $1. (2.11) 

One might be tempted to decouple the equations of motion (2.8a), but apparently 
it is more natural to treat them as they are. The  auxiliary equation associated with 
(2.8a) is 

R 2 + w J R + Q 2 1  = 0 .  (2.12) 
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It is satisfied by the matrices 

Therefore the general solution of (2.8a) is 

(2.12a) 

(2.13) 

The matrix of the form exp(J+) appearing in the solution (2.13) is just the plane 
rotation matrix, that is 

exp(Jgl) = cos +I+ sin 4J  (2 .13~)  

as can easily be deduced from the property J2 = -1, given (2.2a). Specification of 
the coefficients U ,  b via the end conditions (2,11), leads to the required classical 
path, which we shall denote by XL(7). I t  is then a matter of routine algebra to obtain 

XL(7) = exp(-J:.i) [COS Q’T xI’ + 7 SinQ’T(exp(J;t)x,, - cos Q.txL.)] (2.14) 
sin Q’t 

where for the derivation of (2.14) we have made use of (2.13~). In  the case of homo- 
geneous quadratic Lagrangians (which is the case here) the classical action between 
the points (0, x,’) and ( t ,  xl) becomes 

m 
2 

S,(X,tlXI’O) = - { X I .  X & ) - x l ’ .  X , (O)}  

mQ’ w 

2 sin Q’t 

f- sin-t(x, x ~ 1 1 ) ~ .  
mQ’ W 

sinQ’t 2 
(2.15) 

Combining (2.4), (2.5), (2.7), (2.10b) and (2.15) we find for the required propa- 
gator the result: 

mQ‘ 
K(xt/x’O) = 

(2.16) 

I t  was pointed out earlier on that the matrix D(t) appearing in (2.7) can also be 
extracted from the classical action. The details can be found in a beautiful paper by 
De Witt (1957). Here we just quote the result: 

(2.17) 

which easily yields the result obtained from (2. lob). 



Magnetization of harmonically bound charges 777 

It is easy to verify that when w --f 0 (2.16) goes to the harmonic oscillator propa- 
gator, whereas when R + 0 the propagator goes to that of an electron in a magnetic 
field. From (2.16) it follows that the pre-exponential factor associated with the perpen- 
dicular components is affected by the magnetic field in that R is replaced by 
{(a2+ ( ~ / 2 ) ~ } ~ ’ ~ .  However, the influence o€ the magnetic field in the spatial variation 
of the propagator is more pronounced. 

Next we shall obtain the density of states of our charge. We shall do so from the 
partition function, which we shall use for other purposes. It is well known that the 
partition function can be obtained from the propagator as 

Z(P) = j K(x,  -%PIX, 0) dx 

= [2. sinh( +BA( !2’ +-~)}sinh[@fL(!2’-~))sinh( ipAR)] (2.18) 

where for the derivation of (2.18) we have made use of (2.16) for the propagator. 

oscillator with fundamental frequencies : 
The partition function (2.18) amounts to the partition function of an anisotropic 

w w 
Ql = R’+ - Q 2 -  -a ’ - - -  Q, = R. (2.1 8a) 

2 2 

The density of states is the inverse Laplace transform of Z(p). 
Now, using the relation 

m m  

&{sinh(+PfiQ))-l = 2 8(c-(n++)hQ}exp( -,Be) dc (2.19) 

for the three frequencies R’ + (w/2) ,  R’ - (w/2)  and Q, and applying the convolution 
theorem to (2.18) we find for the density of states the result 

0 n=o 

(2 .20)  

where are the various energy levels: 

Expression ( 2 . 2 0 ~ )  for the energy levels gives the Zeeman effect for harmonically 
bound electrons. It should be noted that the degeneracy of the various energy levels 
of the isotropic oscillator is generally removed upon the introduction of the magnetic 
field. 

3. Simple applications 
We shall be concerned with two cases where charged particles are more or less 

harmonically bound : 
(i) The  Einstein model for an ionic lattice under the influence of an external 

magnetic field. In  this case we obtain the susceptibility of the ionic lattice and the 
effect of the magnetic field on the lattice specific heat. The  susceptibility will be 
extremely small, since the magnetic moment of an ion is very small due to the large 
mass of the latter. Nevertheless this quantity is shown to be different from zero, 
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however small it might be. Similar remarks apply to the effect of the magnetic field 
on the lattice specific heat. 

(ii) The  protons in a crude shell model (with the nucleons considered indepen- 
dently harmonically bound) under the influence of an external magnetic field. Here, 
we shall be mainly interested in the steady susceptibility at absolute zero temperature. 

3.1. The Einstein model 
According to the Einstein model the ions of the lattice vibrate about their mean 

positions independently of each other. Under the influence of an external magnetic 
field the quantal motion of each ion is described by our propagator (2.16). Now, 
for the lattice particles Boltzmann statistics are appropriate and since the ions are 
considered independent, the single-particle partition function given in (2.18) suffices 
to provide all the necessary thermodynamic information. 

The Boltzmann free energy 
F = - A‘kT In Z(p) 

takes the form : 

+ In sin(&/36Q) + 3 In 21 . 
(3.1) 

The lattice energy under the influence of the magnetic field will be given by 

The lattice heat capacity is given by 
i3E c = -  
aT 

= N k  { f i (  Q’ - & ~ ) / 2 k  T)’ + -_ {6( Q’ + &w)/2k T)’ 
(sinh2{fi( Q’ + *w)/ZkF)+ sinh2{fi( Q’ - 4w)jZkT) sinh2( AQ/2kT) 

s-l and lo8 s-l (for B N lo4 G). 
Under these circumstances Q’ is practically Q. Therefore, from (3.3) it follows that 
the heat capacity is practically unaffected by magnetic fields up to lo4 G and even 
higher. 

Using (3.1) for the free energy of the ionic lattice, we obtain for the magnetization 
per unit volume 

The  orders of magnitude of Q and w are 

1 aF 
v aB 

M - i -  

- - - 2% [coth(i@(Q’ + ;)I(& + 1) 
v 2  

+coth(a/36(Qf- ;)I(-& -1)j (3.4) 

where pi = e,fi/2mi is the magnetic moment of an ion. 
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The magnetic susceptibility per unit volume is then given by 

aMi 
xi = PO% 

= - fi { 1 - (2) ') [cot h( @ A  ( SZ ' + t) ) + co th  (&% (a ' - ) )] 
V 4 k T  

where po is the permeability of free space. 

region, let us evaluate the steady susceptibility. We have, letting w + 0 
Since, due to the orders of magnitude of Q and w ,  we are practically in the w = 0 

Putting kQ2/2kT = x, it is easy to verify that the function 

1 
fo rx  > 0 

1 
-cothx-  -- 
X sinh'x 

is positive, and therefore the ionic lattice at low fields is diamagnetic. 
Using (3 .2)  and (3 .3 )  at w = 0, the free field lattice energy and heat capacity are 

(fiQj2k T)2  
sinh2( kQj2kT)' 

( 3 . 6 )  Eo = #NkQco th  (z"a,, - CO = 3Nk 

With the aid of (3 .6)  we can express ( 3 . 5 ~ )  in terms of the zero field properties of 
the lattice E ,  and Co. So, the ionic susceptibility at zero field is given by 

2 pi2 Eo-COT 
xi = -Po-- at B = 0. 

3V6Q kQ (3 .7 )  

It should be noted here that classically the quantity E ,  - COT is zero, whereas 
quantally it differs from zero. Therefore the existence of magnetization in the ionic 
lattice (however small it might be) is a purely quantum effect. 

3.2. The crude shell model 
Let us now turn to the magnetization of harmonically bound charges which 

obey Fermi-Dirac statistics. 
As pointed out earlier on we shall restrict the discussion to the absolute zero 

temperature. It is well known that the free energy at T = 0 K is just the ground 
energy of the system, that is 

nr 

F O =  J E C S ( E - E E ~ - ~ Z .  kS2) de 
O n  
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where the index n stands collectively for the three quantum numbers n,, n2, n3 of the 
energy eigenvalues given in (2.20n). eo( = 7%Qf + 8hQ) is the single oscillator ground 
energy and S2 = (Ql, Q2, Q) given by (2.18a). 

[ is the Fermi level defined by 

2 ~ ( C - E O - ~ .  7%Q) = A'. (3.9) 
n 

Equation (3.9) defines C so that the number of lattice points (a,, n2, a3)  for which 

En 6 i (3 .sa) 
equals N ,  the number of particles in the system. Thus, the lattice points which 
satisfy (3.9) are all the lattice points inside and on the tetrahedron formed by the 
coordinate planes of the first octand and the plane 

X17%Q1+XZ7%Q2+X37%Q = [-.I). (3.9b) 
Using (3.9) we find for the magnetization per unit volume. 

Using (3.9), (3.10) becomes 

The  term - NpzB/VfiQf represents the steady part of the magnetization, whereas 
the series term in (3.11) is a small oscillatory term as a function of B. The oscillations 
of the magnetization become smaller and smaller as the spacing of the energy levels 
becomes closer and closer. I t  is worth noticing that the steady magnetization comes 
solely from the lowest energy of the harmonic oscillator. Therefore if the measure- 
ment of the magnetization of harmonically bound charges is feasible, this provides 
a test for the energy value #7%Q to be the zero point energy of the harmonic oscillator. 

Finally, we show that in the limit of highly packed levels the series term becomes 
zero. This is done by converting the sum in (3.11) into an integral, which in this case 
is permissible. 

We introduce 
E ,  = n,7%Q2, = n27%Q2 e3 = n37%Q. (3.12a) 

On changing the quantum numbers nj by unity the energy changes are 

Ael = hQl Aez = 7%Q2 Ae3 = hQ. (3.12b) 
Then, the volume of a unit cell is given by 

AclAa2Ae3 = (3.12~) 
Therefore the series term in (3.11), in terms of the energy components takes the form 

(3.13) 

where the summation is taken over all points (€1, eZ, e3)  obtained via the transforma- 
tion (3.12a) when the nj run over all the lattice points of the tetrahedron as before. 
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I n  summing (3.13),  the deviation from zero will come from the anisomery and 
the size of the edges of the unit cells. This deviation goes to zero as the size of the 
energy cells tends to zero. 

In  the limit of highly packed energy levels (3.13) goes to 

where in (3.13a) we used for convenience 5 in place of <--E,,. 
Using (3.11) and (3.13) we have for the susceptibility 

(3.14) 

The first term in (3.14) is the steady susceptibility, which is diamagnetic. The term 
8M,/aB is bound to exhibit sharp peaks at certain values of B for which net migra- 
tion between the populations of the quantum numbers 1 and 2 takes place, as a 
result of the Fermi-Dirac statistics. 

Finally, for small fields the steady susceptibility becomes 

(3.15) 

4. Conclusions 
The present calculations show the existence of magnetization for harmonically 

bound charges as a quantum effect. They also show that the order of magnitude of 
the ionic magnetization is such that it cannot possibly obscure the magnetic measure- 
ments of the conduction electrons. I t  should of course be noted here that we are 
excluding electronic transitions in the ions. Similar remarks apply to the measure- 
ments of the electronic specific heat. 
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